

Qualification and Reliability Testing of a **Microchip Laser System for Space Applications**

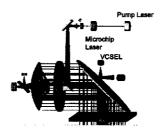
Malcolm Wright, Don Franzen, Hamid Hemmati, Mike Sandor JPL, California Institute of Technology July, 2003

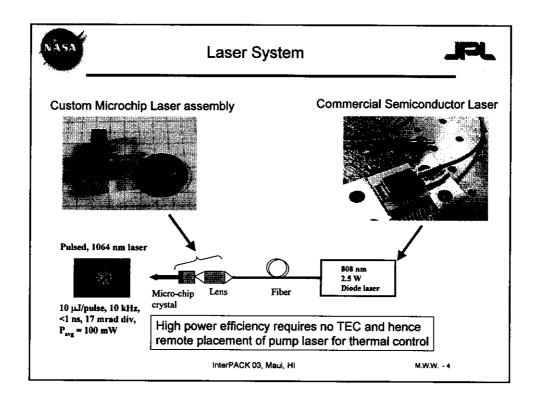
Malcolm.Wright@jpl.nasa.gov

InterPACK 03, Maui, HI

Outline

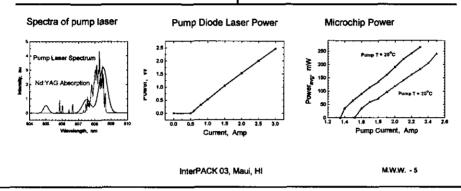
- Introduction
 - Laser system
- Requirements
 - Performance
 - Environmental
 - Reliability issues Qualification testing plan
 - Screening
 - Qualification
- Results
 - Lifetest
 - DPA
 - PIND
 - Temperature Cycle
 - Vibration
 - Constant Acceleration
- Summary


InterPACK 03, Maui, HI


Introduction

- Pulsed laser required for compact space-borne scanning laser radar system
- · Applications:
 - Autonomous rendezvous and docking
 - Smart lander
 - Imaging lidar
- Technology demonstration ⇒ make use of commercial components

InterPACK 03, Maui, HI



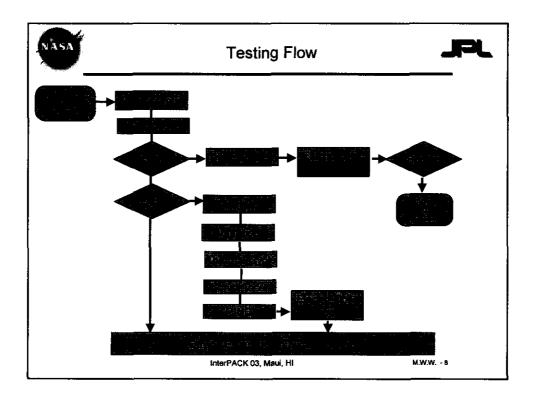
Pump Laser - requirements & specifications

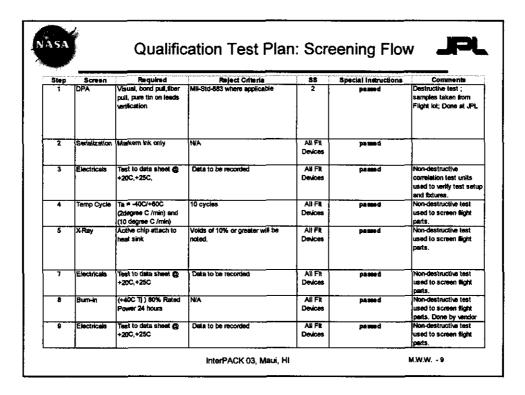
- Optical pump for solid state microchip laser
- Requirements:
 - High power
 - Fiber coupled
 - Fixed wavelength independent of temperature
- $\lambda = 808 \text{ nm} + /- 1 \text{ nm}$
- 2.5 W cw fiber coupled (200 um diam)
- Reliability an issue due to power and optical mode volume
- Qualification approach is procure and qualify commercial devices based on Telcordia.

System Environmental Requirements

Lifetime	Operational	5000 hours MTBF	
	Non-operational	5 years	
Vibration	Random	1 min/axis 14.4 g(rms)	
	20-50 Hz	0,01 - 0,15 g ² /Hz	
	50-800 Hz	1 g²/Hz	
	800-2000 Hz	_1065 g ² /Hz	
Pyro Shock	100-1500 Hz	100 – 1800 g	
	1500-10000 Hz	_1800 g	
Thermal	Operating	-20 to 30 ° C	
	Non-operating	-40 to 50 ° C	
	Cycling Storage	3 cycles 144/24 hrs hot/cold Max Temp	
Pressure	Space	TBD	
Shielding	EMC	Isol., cond., rad.	
	ESD	TBD	
Radiation		≤ 20 krad/year by design behind 100 mils Al	
Laser safety	Ground operations		

InterPACK 03, Maui, HI


Laser Performance/Reliability Issues

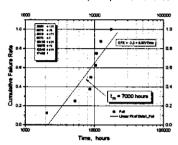


- · Critical parameters
 - Output power, wavelength stability (especially pump laser), linewidth
 - · Drive current, efficiency, temperature range
- · Semiconductor laser failure mechanisms
 - · Mechanical: Die shear, wire bond fail, fiber pull
 - Metal electrode and solder stability: soft diffusion, hard instability
 - · Device dislocations and defects
 - Facet damage oxidation and COD
 - · Bandgap shrinking facet heating
 - · Optical mode quality
 - Radiation damage (eg 0.01 dB/krad penalty)
- · Telcordia (Bellcore) standard used in fiber optic industry
 - · Defines testing, performance and evaluation criteria
 - · Generally meet or exceed environmental system requirements

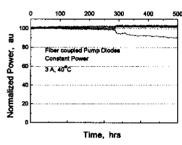
Custom qualification testing flow based on Telcordia standard

InterPACK 03, Maui, HI

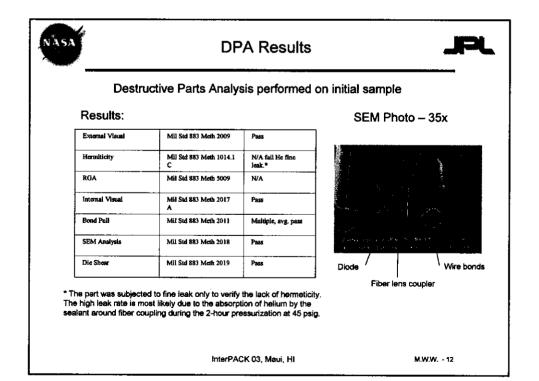
			AII. UKC	aminoanom	Flow
			•		
Life Test ((+60C 1)) 80% Rated	NA	4 from	passed	Destructive test used t
Burn-In)	Power 500 hours	-	step 9	ļ	qualify flight parts.
End Point Electricals	Test to data sheet @ +20C,+25C	Data to be recorded	l l	passed	Destructive test used to qualify flight parts.
Temp Cycle	Ta = -40C/+60C (2	50 cycles	2	passed	Destructive test used t
Quai	degree C /min) and (5 degree C /min)			·	qualify flight parts.
End Point	Test to data sheet @	Data to be recorded	 -	passed	Destructive test used t
Electricals	+20C,+25C				qualify tight parts.
ESD	HBM TBD		2	passed	Destructive test used t
		L			qualify flight parts.
End Point	Pre & post test to data	Data to be recorded		passed	Destructive test used t
Electricals	sheet @ +20C,+25C			ļ	qualify flight parts.
1	with pre and post ESD			1	
	input diode			1	
	forward/reverse curve			1	
	recorded using curve				
Vibration	tracer Mil. 883 Method 2007		- 2		Destructive test used t
A IDIMINON	Cond A	1	4	pessed d	qualify flight parts.
End Point	Test to data sheet @	Data to be recorded		passed	Destructive test used t
Electricals	+20C.+25C			Prame	qualify flight parts.
Internal	ML-STD-883	Max 5000 ppm water vapor	2	passed	Destructive test used t
Moisture	Method 1018		-		qualify flight parts.
PIND	ML-STD-883	<u> </u>	2		Nondestructive test
1	Method 2020				used to qualify flight
	1.			1 passed 1 anomoly	perts.
Constant	Mil 883 Method 2001	I	2		Destructive test used to
Acceleration	Cond B		4	2 feiled	quality flight parts.

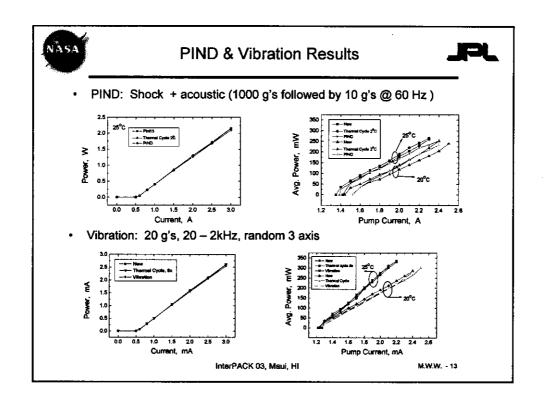


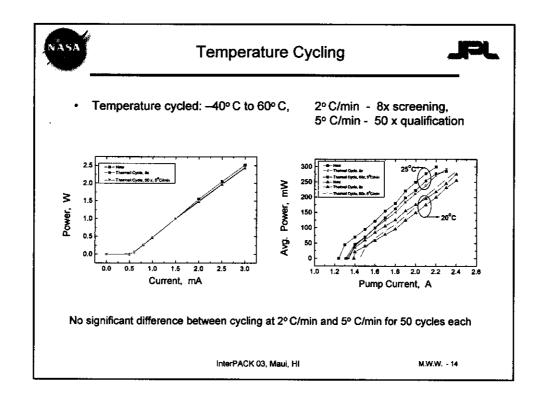
Life Test - analysis and results



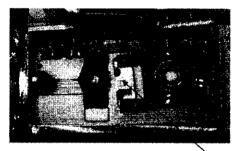
- Laser life test requirements based on Arrhenius model with assigned activation energy
- 5000 hours at 25° C ⇒ requires 500 hour test at 40° C base temperature (junction temp ~ 60° C)


C-mount Diode Laser, 3 W, 40°C Failures




Packaged Diode Laser Lifetimes

InterPACK 03, Maui, HI



Constant Acceleration and final DPA

Test: 5000 g's 3 axis, 2 orientations /axis, 1 min each axis

Device failure: note fiber - diode misalignment

InterPACK 03, Maui, HI

M.W.W. - 15

Summary

- Qualification test plan developed for high power laser diodes. Telcordia (Bellcore) qualification has similar requirements.
- · Commercial pump laser diodes can be qualified for space applications.
- · Packaging does not meet high acceleration environment.

InterPACK 03, Maui, HI